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Abstract

The limit value of the Nusselt number for pure heat conduction was numerically determined for di�erent particle

shapes. In the case of nonspherical particles, substantial errors can result in the calculation of the heating time when the

Nusselt number of the sphere Nu� 2 is applied and the sieve diameter is used as the characteristic dimension. That a

uniform description of the Nusselt number is possible for all considered particle shapes is demonstrated. However, this

Nusselt number, determined using the sieve diameter, is then not constant, but depends exponentially on the ratio of the

Sauter diameter to the sieve diameter. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An idealized spherical shape of the particle is usually

assumed when calculating the heat and mass transfer

between solid particles and a surrounding ¯uid. How-

ever, to a certain extent the real shape of such particles

di�ers substantially from this ideal shape. Particularly

unevenness and edges play a large role in solid particles.

By comparison, liquid particles always have an ap-

proximately spherical shape due to the surface tension.

In the case of solid particles in the lm-range, e.g. coal

particles or dusts, the heat and mass transfer essentially

take place through conduction or di�usion. Due to the

small diameter and the low relative velocity to the ¯uid,

the Reynolds number Re approaches zero. If, for ex-

ample, the sedimentation velocity is assumed to be the

relative velocity of the particles, a Reynolds number of

Re� 0.08 results for a particle with a diameter d� 100

lm and a density q� 1300 kg/m3 in hot air of 1000°C.

Thus the convection part in the Nusselt number equa-

tion [1]

Nu � 2� 0:664Re0:5Pr1=3 �1�
is smaller than 0.2 and, compared with the minimum

limit of Nu� 2 resulting from heat conduction, is neg-

ligible. Even in the case of larger particles, higher rela-

tive velocity and lower gas temperatures, as a rule the

limit value of 2 in comparison with the convection part

cannot always be disregarded. The limit value of the

Nusselt number for di�erent particle shapes is therefore

examined below. The minimum value of the heat ¯ow

results from thermal conduction in the in®nitely ex-

tended ¯uid. The heat ¯ow _Q is de®ned by a heat

transfer coe�cient a in accordance with

_Q � aA #W� ÿ #1� �2�
with A is the surface area of the particle, #W the surface

temperature of the particle and #1 is the ambient tem-

perature.

This value can be analytically determined for the

sphere and the spheroid with the limit case circular disk.

For the circular cylinder, the cube and two touching

spheres approximate solutions are known from the ®eld

of electrostatics. The steady-state temperature ®eld
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around the body is then analogous to the electrostatic

®eld around an electrically charged body. A coe�cient

aA=k usually results as solution. In literature, this

quantity is also denoted as shape coe�cient [2] or con-

ductance [3]. Table 1 speci®es the value of the shape

coe�cient for the bodies named above.

In the case of the sphere, the shape coe�cient is de-

pendent on the diameter d, while in the case of the

spheroid and the circular cylinder it additionally de-

pends on the length to diameter ratio L/d. A separate

function is obtained for each geometry. Thus a generally

valid presentation, e.g. with a Nusselt number, is im-

possible. The di�culty is de®ning a characteristic di-

mension. The objective of this study is to ®nd a

universally applicable formulation for di�erent geome-

tries. What is more, it addresses the question of which

dimension is crucial for the heat transfer in particular.

2. Characteristic dimension for the Nusselt number

The subsequent observations are restricted to axi-

symmetric bodies. The following dimensions can be se-

lected as characteristic for these bodies:

· diameter, d;

· length, L;

Nomenclature

a thermal di�usivity

A surface area

c speci®c heat capacity

d diameter

L length

N number of waves

Nu Nusselt number, adch/k
Pr Prandtl number, m/a

_q heat ¯ux
_Q heat ¯ow

Re Reynolds number, wd/m
t time, amplitude

V volume

w velocity

x coordinate

X dimensionless coordinate, x/dch

y coordinate

Y dimensionless coordinate, y/dch

z coordinate

Z dimensionless coordinate, z/dch

Greek symbols

a heat transfer coe�cient

k thermal conductivity

# temperature

m kinematic viscosity

H dimensionless temperature,

�#ÿ #1�=�#W ÿ #1�
q density

Subscripts

a outer

A surface

ch characteristic

m mean

t time

S Sauter

V volume

W wall

0 start value

1 at a great distance, in in®nity

Table 1

Shape coe�cient aA=k for particles in a stagnant medium

Particle shape Shape coe�cient aA=k Refs.

Sphere 2pd [2±4]

Spheroid [2±4]

Oblate (L=d < 1) 2pd
����������������������
1ÿ �L=d�2

q
arccos�L=d�

Prolate (L=d > 1) 2pd
����������������������
�L=d�2 ÿ 1

q
ln L=d �

����������������������
�L=d�2 ÿ 1

q� �
Circular disk (L=d � 0) 4d [2±4]

Circular cylinder (06L=d 6 8) �8� 6:95�L=d�0;76�d=2 [3,5]

Cube (edge a) 0:656 4pa [3]

Two touching spheres of equal size �2 ln2��2pd� [3]
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· surface diameter, dA �
��������
A=p

p
;

· volume diameter, dV �
�������
6
p V3

q
;

· Sauter diameter, dS � 6V =A;

· mean diameter, dm � �d � L�=2.

Only in the case of the sphere, these dimensions are

equally large and correspond to the diameter. Using a

cylinder with L/d� 2 as an example, Fig. 1 compares the

characteristic dimensions with each other. The diameter

d of the particle, which can be determined by means of

sieving, is the value most easily determined metrologi-

cally. The Sauter diameter can be calculated from the

speci®c surface area A/V which can be measured by

means of the gas adsorption method of Brunauer, Em-

mett and Teller (BET method). For porous materials

however, the measured value is not equivalent to the

outer surface area of the particle. The diameter dV can

be determined by means of the electric sensing zone

method (Coulter Counter). However, for bodies with

concave surface parts, the measured value does not

correspond to the body volume but to the enveloping

volume. The diameter dA can be determined from the

combination of the measured values from the Coulter

Counter and BET. The mean diameter can be approxi-

mately determined by means of optical particle counters

and the length can only be determined from direct

measurement by means of a microscope. The in¯uence

of dch on the value of the Nusselt number is compared

using the spheroid as an example. If in the de®nition

equation of the Nusselt number

Nu � adch

k
; �3�

the characteristic diameter dch is replaced by one of the

aforementioned six diameters, then

Nu � aA
k

dch

A
�4�

is obtained using the shape coe�cient aA=k from Table 1.

The Nusselt numbers resulting for a spheroid with

di�erent length to diameter ratios L/d are plotted in Fig.

2 for the various characteristic dimensions. The smallest

in¯uence of the ratio L/d and the smallest di�erence

from the value Nu� 2 of the sphere appear when the

volume diameter or the surface diameter are applied. By

comparison, a considerable deviation from the value 2

results in the case of the other characteristic dimensions.

In the case of the sieve diameter d usually applied as

characteristic dimension, the Nusselt number of the

sphere Nu� 2 is not suitable for the spheroid. Conse-

quently, it is also unsuitable for other particle shapes.

The deviation of the Nusselt numbers in accordance

with Fig. 2 from the value 2 still does not express

everything about the error when calculating the heating

time of real particles. An additional error results from

the unknown volume and the unknown surface area of

Fig. 1. Characteristic dimensions using a cylinder with L/d� 2

as an example.

Fig. 2. Nusselt numbers Nu(dch) for various characteristic dimensions in the case of a spheroid.
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the particle, which are necessary for calculating heating

time. They are also determined incorrectly if only the

sieve diameter is known.

3. Calculation of the heating time

In the case of small particles, a homogeneous tem-

perature distribution in the particle can be assumed

(Biot ® 0). Thus the heating time t is calculated from the

energy balance

aA #� ÿ #1� � qVc
d#

dt
: �5�

With the initial condition #�t � 0� � #0 and assuming A,

q, V to be constant, the following results when the am-

bient temperature #1 is constant:

t � V
aA

qc ln
#ÿ #1
#0 ÿ #1 : �6�

The calculation of the time then depends on the one

hand on how the Nusselt number and thus the heat

transfer coe�cient is de®ned, and on the other hand on

how the ratio V/A is de®ned. If only one characteristic

dimension is used, the volume to surface ratio V/A is set

to

V
A
� dch

6
�7�

as for the sphere. In accordance with its de®nition, Eq.

(7) is only exactly satis®ed for the Sauter diameter.

Therefore, a corrected heat transfer coe�cient at is in-

troduced, which adjusts the error in the other charac-

teristic dimensions, so that the time t, in accordance with

Eq. (6), is correctly calculated. The Nusselt number

belonging to it is de®ned in accordance with

Nut � atdch

k
: �8�

From this the calculation equation for the heating time

results

t � dch

6at
qc ln

#ÿ #1
#0 ÿ #1 �

d2
ch

6kNut
qc ln

#ÿ #1
#0 ÿ #1 : �9�

Owing to

V
aA
� dch

6at
; �10�

the following ensues for the determination equation for

Nut:

Nut � d2
ch

6V
Aa
k
: �11�

Using the shape coe�cient corresponding with Table

1 and the spheroid volume

V � 4

3
pd2L; �12�

this Nusselt number can be analytically calculated for

the spheroid. In Fig. 3 these new Nusselt numbers Nut,

resulting from the various characteristic dimensions, are

plotted as a function of L/d. A strong dependence on the

ratio L/d and a large deviation from the value 2 of the

sphere for L=d 6� 1 is apparent. If the sieve diameter d

is used as characteristic dimension, a deviation in the

calculation of the heating time between the real value

Fig. 3. Nusselt number Nut(dch) for calculating the heating time when applying the same characteristic dimension dch to Nut and to the

speci®c surface area.
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and the value using Nu� 2 can be detected. For exam-

ple, this deviation is of approximately a factor of 2 for a

slim particle with L/d� 3.5 and of approximately a

factor of 2.5 for a ¯at particle with L/d� 0.3. Since the

ratio L/d is usually unknown, the Nusselt number thus

cannot be determined if only one single characteristic

dimension is known. The heat transfer for a number of

model particles was therefore numerically calculated to

determine suitable characteristic dimensions for di�erent

particle shapes.

4. Model bodies

A very large ¯uid volume must be assumed to ap-

proximate the ``in®nite'' extent of the surroundings. In

the numerical calculation this results in a large number

of volume elements, which have a sizable storage re-

quirement and need long computation times. For that

reason, only axisymmetric bodies, which can be calcu-

lated two dimensionally, were selected.

The following were used as model bodies (Fig. 4):

· cylinder with axial ratio of 0:26L=d 6 5;

· spheroid with axial ratio of 0:26 L=d 6 5;

· double cone with axial ratio of 0:26 L=d 6 5;

· barrel with axial ratio of 0:26 L=d 6 5;

· dumbbell-shaped body with axial ratio of

16 L=d 6 5;

· spheroid with wavy surface.

Two lengths, d and L, are needed for the description of

the ®rst three bodies; three quantities are already re-

quired in the case of the barrel and the dumbbell-shaped

body (L, d, d2); and four quantities are ®nally necessary

for the spheroid with wavy surface (L, d, amplitude t of

the sine oscillation and the number of waves N).

5. Numerical determination of the minimum Nusselt

number

The minimum heat ¯ow can be calculated from the

steady-state temperature ®eld around the body. The

following di�erential equation applies to this:

o
ox

k
o#
ox

� �
� o

oy
k

o#
oy

� �
� 0: �13�

As boundary conditions, #W and #1 are assumed to be

constant. The dimensionless temperature H is intro-

duced and dimensionless spatial coordinates X and Y

are formulated with a characteristic diameter dch. The

thermal conductivity k is assumed to be constant.

The following is then valid for the total heat ¯ow _Q:

_Q �
Z

A
_qd~A � ÿ

Z
A

kgrad#d~A: �14�

In accordance with Newton's law of cooling, the heat

transfer coe�cient a is de®ned as

_Q � aA #W� ÿ #1�: �15�
From equations (14) and (15)

aA
k
� ÿ

Z
A

gradHd~A �16�

follows for the shape coe�cient. To solve the di�erential

equation, a ®nite volume procedure was employed on

structured orthogonal grids, allowing the calculation of

the heat ¯ow for pure heat conduction. A modi®ed

version of the volume method proposed by Nirschl [6]

was applied. Assuming a given surface structure with

free extension into the surrounding environment, a hy-

perbolic grid generation is well suited for producing

orthogonal grids. Fig. 5 shows such a hyperbolic grid

Fig. 4. Basic shapes of the model particles.
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around a cylinder. Sharp edges had to be smoothed in

order to avoid oscillations of the solution of the grid

generator. The outer contour of the grid is approxi-

mately at da � 40d.

The analytical solution for the spheroid [4] was em-

ployed to check the numerical error when calculating the

temperature ®eld. A maximum discretization error of

approximately 4% results for the numerically calculated

area. The error, which results from grid generation only

up to fortyfold of the outer radius of the body, is not

taken into account here. If this error is added, a total

error of a maximum of 11% results. This error can be

reduced by not introducing H1 � 0 as the boundary

condition on the outer edge but rather the value of

H1 � 0:025, resulting from the analytical solution of the

sphere at da � 40d.

6. Comparison of the Nusselt numbers for various bodies

To investigate the in¯uence of the body shape on the

Nusselt number Nut, the values according to Eq. (11)

were compared for the di�erent bodies in Fig. 6. The

characteristic dimension is set as dch� d. A large devia-

tion appears amongst the di�erent body shapes. Also a

large deviation from the value Nu� 2 of the sphere can

be seen for all body shapes. Therefore, the text below

discusses possibilities to achieve a formulation for the

Nusselt number which is as independent as possible

from the body shape. In accordance with Fig. 3, using dV

or dS as characteristic dimensions for Nut, the smallest

deviations from the value Nu� 2 resulted. For that

reason the Nusselt numbers for all model bodies, formed

using dV and dS, are compared in Fig. 7. A relatively low

dependence on the body shape for dV appears and a

somewhat larger dependence for dS. The in¯uence of L/d

however cannot yet be disregarded in these two char-

acteristic dimensions. Thus, no uniform Nusselt number

can be speci®ed for the di�erent body shapes using only

one characteristic dimension. The text below investigates

whether this is possible using two characteristic dimen-

sions. As Fig. 3 shows, the largest independence from

L=d is achieved for the de®nition of the Nusselt number

Fig. 5. A grid around a cylinder produced with a hyperbolic

grid generator.

Fig. 6. Nusselt number Nut with d as characteristic dimension.

Fig. 7. Nusselt number Nut for dV and dS as characteristic dimension.

972 A. Wadewitz, E. Specht / International Journal of Heat and Mass Transfer 44 (2001) 967±975



using Eq. (3) with dch� dA. Fig. 8 shows this Nusselt

number for the model bodies. To calculate the heating

time exactly, it is additionally necessary to know the real

ratio V =A � dS=6 of the particle. The dependence on the

body shape can then be disregarded and the deviation

from the value 2 of the sphere amounts to only a max-

imum of 15%. The value 2 of the sphere can thus still be

used. However the two new characteristic dimensions dS

and dA are necessary. But especially dA is metrologically

di�cult to determine.

Metrologically easiest to determine are d (e.g.

through sieving) and dS (e.g. through BET). Hence, a

presentation of the Nusselt number independent of the

body shape was investigated using both these dimen-

sions. To this end the Nusselt number Nut was formed,

in accordance with Eq. (11) using the diameter d. The

resulting Nusselt numbers are plotted against the ratio

dS/d in Fig. 9. It is apparent that the values for the

various bodies now lie very close to each other. Only in

the range of dS=d > 1 does the double cone show a

Fig. 8. Nusselt number for dA as characteristic dimension and usage of the real ratio of V/A of the particle.

Fig. 9. Nusselt number Nut for d as characteristic dimension.
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somewhat larger deviation from the other curves. If the

data points for all calculated bodies are approximated

by an exponential function, the following equation re-

sults:

Nut � 1:80eÿ2:22�dS=dÿ1�: �17�

With knowledge of dS and d, the heating time in ac-

cordance with Eq. (9) (with dch� d) can thus be calcu-

Fig. 10. Nusselt number for dA as characteristic dimension and usage of the real ratio of V/A of the particle.

Table 2

Curve parameters for Figs. 10 and 11

Curve 1 2 3 4 5 6 7 8 9 10 11 12

N 0 10 10 8 8 8 6 6 6 4 4 4

t=d �L=d > 1�
t=L �L=d < 1�

0 0.025 0.05 0.025 0.05 0.1 0.025 0.05 0.1 0.025 0.05 0.1

Fig. 11. Nusselt number Nut for d as characteristic dimension.
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lated relatively exactly using this Nusselt number. By

applying the corrected Nusselt number, it is then un-

necessary to know the surface area of the individual

particle.

7. In¯uence of surface waviness

Until now only smooth body shapes were considered

in model particles. A sine function was therefore

superimposed on the surface contour of the spheroid to

approximate surface waviness. In this way a waviness of

the surface is achieved as Fig. 4 represents in an exam-

ple. Besides L and d, the amplitude of the sine function

and the number N of the waves are added as additional

body dimensions. The number of sine oscillations was

varied between N� 4 and N� 10 and the amplitude

related to the smallest dimension was varied between

0.025 and 0.1. Greater values for N and t were im-

possible since a limit was set by the hyperbolic grid

generator, because above all this is suitable for convex

surfaces.

Analogous to Fig. 8 the Nusselt number, formed

with dA, is represented in Fig. 10 as a function of L/d.

Parameters are N and t in accordance with Table 2. The

in¯uence of these parameters grows all the smaller, the

more L/d deviates from the value 1. With )5% to +15%,

the di�erences from the value 2 of the sphere are again

relatively small. Analogous to Fig. 9 the newly de®ned

Nusselt number Nut, formed with d, is represented in

Fig. 11 as a function of dS/d and with the parameters

from Table 2. Again a relatively small deviation from

the regression curve in Fig. 9 results. Therefore the heat

transfer of various particle shapes can be uniformly

represented, if d is applied as characteristic diameter

both to the Nusselt number and to V/A, and Nut is

calculated as a function of d/dS in accordance with Eq.

(17).
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